An algorithm for computing exact least-trimmed squares estimate of simple linear regression with constraints

نویسنده

  • Lei M. Li
چکیده

The least-trimmed squares estimation (LTS) is a robust solution for regression problems. On the one hand, it can achieve any given breakdown value by setting a proper trimming fraction. On the other hand, it has √ n-consistency and asymptotic normality under some conditions. In addition, the LTS estimator is regression, scale, and a6ne equivariant. In practical regression problems, we often need to impose constraints on slopes. In this paper, we describe a stable algorithm to compute the exact LTS solution for simple linear regression with constraints on the slope parameter. Without constraints, the overall complexity of the algorithm is O(n log n) in time and O(n) in storage. According to our numerical tests, constraints can reduce computing load substantially. In order to achieve stability, we design the algorithm in such a way that we can take advantage of well-developed sorting algorithms and softwares. We illustrate the algorithm by some examples. c © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

Matrix strategies for computing the least trimmed squares estimation of the general linear and SUR models

An algorithm for computing the exact least trimmed squares (LTS) estimator of the standard regression model has recently been proposed. The LTS algorithm is adapted to the general linear and seemingly unrelated regressions models with possible singular dispersion matrices. It searches through a regression tree to find the optimal estimates and has combinatorial complexity. The model is formulat...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

Application of Network RTK Positions and Geometric Constraints to the Problem of Attitude Determination Using the GPS Carrier Phase Measurements

Nowadays, navigation is an unavoidable fact in military and civil aerial transportations. The Global Positioning System (GPS) is commonly used for computing the orientation or attitude of a moving platform. The relative positions of the GPS antennas are computed using the GPS code and/or phase measurements. To achieve a precise attitude determination, Carrier phase observations of GPS requiring...

متن کامل

The Trimmed Lasso: Sparsity and Robustness

Nonconvex penalty methods for sparse modeling in linear regression have been a topic of fervent interest in recent years. Herein, we study a family of nonconvex penalty functions that we call the trimmed Lasso and that offers exact control over the desired level of sparsity of estimators. We analyze its structural properties and in doing so show the following: 1. Drawing parallels between robus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2005